Solving the Quadratic Assignment Problem on heterogeneous environment (CPUs and GPUs) with the application of Level 2 Reformulation and Linearization Technique
نویسندگان
چکیده
The Quadratic Assignment Problem, QAP, is a classic combinatorial optimization problem, classified as NP-hard and widely studied. This problem consists in assigning N facilities to N locations obeying the relation of 1 to 1, aiming to minimize costs of the displacement between the facilities. The application of Reformulation and Linearization Technique, RLT, to the QAP leads to a tight linear relaxation but large and difficult to solve. Previous works based on level 3 RLT needed about 700GB of working memory to process one large instances (N = 30 facilities). We present a modified version of the algorithm proposed by Adams et al. which executes on heterogeneous systems (CPUs and GPUs), based on level 2 RLT. For some instances, our algorithm is up to 140 times faster and occupy 97% less memory than the level 3 RLT version. The proposed algorithm was able to solve by first time two instances: tai35b and tai40b.
منابع مشابه
A New Branch-and-Bound Solver for the Quadratic Assignment Problem Based on the Level-3 Reformulation-Linearization Technique
We report on the implementation of a level-3 reformulation linearization technique (RLT-3)-based bound calculation in a branch-and-bound algorithm. The RLT-3-based bound calculation method is not guaranteed to calculate the RLT-3 lower bound exactly, but approximates it very closely and reaches it in some instances. We tested the new branch-andbound solver on six Nugent instances, 15, 18, 20, 2...
متن کاملMemory-Aware Parallelized RLT3 for solving Quadratic Assignment Problems
We present a coarse-grain (outer-loop) parallel implementation of RLT1/2/3 (Level 1, 2, and 3 Reformulation and Linearization Technique—in that order) bound calculations for the QAP within a branch-and-bound procedure. For a search tree node of size S, each RLT3 and RLT2 bound calculation iteration is parallelized S ways, with each of S processors performing O(S) and O(S) linear assignment prob...
متن کاملA level-2 reformulation-linearization technique bound for the quadratic assignment problem
This paper studies polyhedral methods for the quadratic assignment problem. Bounds on the objective value are obtained using mixed 0–1 linear representations that result from a reformulation–linearization technique (rlt). The rlt provides different “levels” of representations that give increasing strength. Prior studies have shown that even the weakest level-1 form yields very tight bounds, whi...
متن کاملHybrid ARQ Symbol Mapping in Digital Wireless Communication Systems Based on the Quadratic 3-dimensional Assignment Problem (Q3AP)
We report on the development of algorithms for solving the Quadratic 3-dimensional Assignment Problem (Q3AP). The application is a hybrid ARQ scheme for enriching diversity among multiple packet transmissions by optimizing the mapping of transmission symbols to data. Our current exact algorithm, based on a reformulation linearization technique, solves Q3AP instances of size 13 or smaller. Our f...
متن کاملRLT2-based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters
This paper discusses efficient parallel algorithms for obtaining strong lower bounds and exact solutions for large instances of the Quadratic Assignment Problem (QAP). Our parallel architecture is comprised of both multi-core processors and Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPUs) on the Blue Waters Supercomputing Facility at the University of I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.02065 شماره
صفحات -
تاریخ انتشار 2015